Posted on

As Illumina sequencings are becoming more and more popular, there are various sequencing centers available for sequencing services around the nation. Here at UT-Austin, we have a renowned sequencing center (UT-Austin GSAF) that has been greatly helpful to my own work. However, recently we have had good experience with MD Anderson Science Park Next-Generation Sequencing (NGS) Facility. So in this post, I am going to compare the sequencing prices between these two centers for future reference.

Since the two sequencing centers have their sequencing prices posted online, I will do some web scraping to collect the data, and data cleaning for visualizing the comparisons.

%matplotlib inline

import urllib.request
import pandas as pd
from bs4 import BeautifulSoup
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sequencing_tools.viz_tools import okabeito_palette

Science park price table

For MD Anderson Science park price, I will download the data from their website.

mda = 'https://www.mdanderson.org/research/research-resources/core-facilities/next-generation-sequencing-core/services.html'
mda_html = urllib.request.urlopen(mda)
soup = BeautifulSoup(mda_html, 'lxml')
tabs = soup.find_all('table')
table = tabs[-1]
mda_df = pd.read_html(str(table), 
                      flavor='bs4',
                     header=0,
                     index_col = 0)[0]
mda_df
NGS User Group Member Price (per lane) MDACC Faculty, UT System, BCM w/ MOU Price (per lane) *External Out-of-Network Price (per lane)
Service
HiSeq 3000 NaN NaN NaN
50 bp, single read $966.41 $1,100.71 $2,177.47
75 bp, paired end $1,746.41 $1,880.71 $3,425.47
100 bp, paired end $2,089.61 $2,223.91 $3,974.59
150 bp, paired end $2,431.25 $2,565.55 $4,521.22
NextSeq 500 NaN NaN NaN
High Output: NaN NaN NaN
75 bp, single read $1,632.95 $1,853.96 $3,238.11
75 bp, paired end $3,085.83 $3,306.84 $5,562.72
150 bp, paired end $4,904.79 $5,125.80 $8,473.06
Mid Output: NaN NaN NaN
75 bp, paired end $1,232.55 $1,453.56 $2,597.47
150 bp, paired end $1,941.83 $2,162.84 $3,732.32
MiSeq NaN NaN NaN
50 bp, single read (v2 chemistry) $948.99 $1,132.53 $1,358.78
150 bp, paired end (v2 chemistry) $1,202.19 $1,481.73 $1,707.98
300 bp, single read (v2 chemistry) $1,202.19 $1,481.73 $1,707.98
300 bp, paired end (v3 chemistry) $1,782.99 $2,177.73 $2,403.98

Now, I need to clean up the table to make it more easily to manipulate. I will need a function to assign the platform (sequencing machines) for each run type (X bp, paired|single end). Then, I will only look at the member price, since that's what we pay for.

def clean_mda_index(idx, data_col):
    platform = ''
    clear = False
    new_idx = []
    for i, dc in zip(idx,data_col):
        if pd.isnull(dc):
            if clear:
                platform = ''
                clear=False
            platform = platform + i + '_'
            new_idx.append(platform)
        else:
            new_idx.append(platform + i)
            clear = True
    return new_idx
mda_price_df = mda_df \
    .assign(seq_type = lambda d: clean_mda_index(d.index, d.iloc[:,0])) \
    .assign(seq_type = lambda d: np.where(d.seq_type.str.contains('Mid Output'),
                                         'NextSeq 500_' + d.seq_type,
                                         d.seq_type))\
    .reset_index() \
    .drop('Service', axis=1) \
    .pipe(lambda d: d[~pd.isnull(d.iloc[:,1])]) \
    .assign(platform = lambda d: d.seq_type.str.split('_', expand=True).iloc[:,0]) \
    .assign(basepair = lambda d: d.seq_type.str.extract('_([0-9]+)', expand=False).astype(int)) \
    .assign(ends = lambda d: d.seq_type.str.extract('(single|paired)', expand=False)) \
    .pipe(lambda d: d[~d.seq_type.str.contains('Mid')]) \
    .assign(md_price = lambda d: d.iloc[:,0].str.replace('[,$]','').astype(float))\
    .assign(machine = lambda d: d.platform.str.replace(' [0-9]+','')) \
    .assign(total_base = lambda d: np.where(d.ends == "paired", d.basepair * 2, d.basepair))\
    .assign(ends = lambda d: np.where(d.machine=="MiSeq", 'single', d.ends))\
    .filter(regex = 'platform|total|ends|md_price|machine')  \
    .drop_duplicates()
mda_price_df
platform ends md_price machine total_base
1 HiSeq 3000 single 966.41 HiSeq 50
2 HiSeq 3000 paired 1746.41 HiSeq 150
3 HiSeq 3000 paired 2089.61 HiSeq 200
4 HiSeq 3000 paired 2431.25 HiSeq 300
7 NextSeq 500 single 1632.95 NextSeq 75
8 NextSeq 500 paired 3085.83 NextSeq 150
9 NextSeq 500 paired 4904.79 NextSeq 300
14 MiSeq single 948.99 MiSeq 50
15 MiSeq single 1202.19 MiSeq 300
17 MiSeq single 1782.99 MiSeq 600

UT GSAF price table#

For UT GSAF price, we will download the table from UT GSAF website.

gsaf = 'https://wikis.utexas.edu/display/GSAF/Library+Prep+and+NGS+Pricing+Descriptions'
gsaf_html = urllib.request.urlopen(gsaf)
soup = BeautifulSoup(gsaf_html, 'lxml')
tabs = soup.find_all('table')
gsaf_df = pd.read_html(tabs[0].prettify(), 
             flavor='bs4',
             index_col = None,
            header=0)[0] 
gsaf_df
Platform Run Type Internal / UT External Academic External Commercial
0 HiSeq 2500 SR 50 $1052 $1331 $1357
1 HiSeq 2500 SR 100 $1428 $1806 $1842
2 HiSeq 2500 PE 125 $2520 $3187 $3250
3 HiSeq 4000 SR 50 (1) $ 1,043 $ 1,319 $1,345
4 HiSeq 4000 PE 150 (1) $ 2,562 $ 3,239 $ 3,266
5 HiSeq 4000 SR 50 $ 1,697 $ 2,146 $ 2,173
6 HiSeq 4000 PE 75 $ 14,494 $ 18,327 $ 18,531
7 NextSeq 500 SR 75 H.O (1,3) $ 2,302 $ 2,906 $ 3,060
8 NextSeq 500 PE 75 H.O . (1,3) $ 3,826 $ 4,834 $ 4,988
9 NextSeq 500 PE 150 H.O. $ 5,735 $ 7,250 $ 7,404
10 MiSeq V2 - 300 cycles $ 1,627 $ 2,054 $ 2,157
11 MiSeq V2 - 500 cycles (1) $ 1,771 $ 2,236 $ 2,339
12 MiSeq V3 - 150 cycles $ 1,463 $ 1,847 $ 1,950
13 MiSeq V3 - 600 cycles (1) $ 2,183 $ 2,758 $ 2,860

The resulting table is much more easier to be interpreted, since it is in a clean format. Again, I will only look at the Internal prices.

gsaf_price_df = gsaf_df\
    .iloc[:, :3] \
    .assign(machine = lambda d: d.Platform.str.replace(' [0-9]+','')) \
    .assign(basepair = lambda d: d['Run Type'].str.extract(' ([0-9]+)', expand=False).astype(int)) \
    .assign(ends = lambda d: np.where(d['Run Type'].str.contains('PE'), 'paired', 'single')) \
    .assign(total_base = lambda d: np.where(d.ends == "paired", 
                                      d.basepair * 2, 
                                      d.basepair))\
    .assign(gsaf_price = lambda d: d['Internal / UT'].str.replace('[$.,]','').astype(float)) \
    .filter(regex = 'total|price|machine|ends|Platform')
gsaf_price_df
Platform machine ends total_base gsaf_price
0 HiSeq 2500 HiSeq single 50 1052.0
1 HiSeq 2500 HiSeq single 100 1428.0
2 HiSeq 2500 HiSeq paired 250 2520.0
3 HiSeq 4000 HiSeq single 50 1043.0
4 HiSeq 4000 HiSeq paired 300 2562.0
5 HiSeq 4000 HiSeq single 50 1697.0
6 HiSeq 4000 HiSeq paired 150 14494.0
7 NextSeq 500 NextSeq single 75 2302.0
8 NextSeq 500 NextSeq paired 150 3826.0
9 NextSeq 500 NextSeq paired 300 5735.0
10 MiSeq MiSeq single 300 1627.0
11 MiSeq MiSeq single 500 1771.0
12 MiSeq MiSeq single 150 1463.0
13 MiSeq MiSeq single 600 2183.0

I notice there's a duplicated price of HiSeq 4000 single end 50-nt (1043 USD vs 1697.0 USD), so I will take the lowest one, and merge with the science park prices.

merge_df = gsaf_price_df\
    .groupby(['Platform','machine','ends','total_base'], as_index=False)\
    .agg({'gsaf_price':np.min})\
    .merge(mda_price_df, how ='outer')
merge_df
Platform machine ends total_base gsaf_price platform md_price
0 HiSeq 2500 HiSeq paired 250 2520.0 NaN NaN
1 HiSeq 2500 HiSeq single 50 1052.0 HiSeq 3000 966.41
2 HiSeq 4000 HiSeq single 50 1043.0 HiSeq 3000 966.41
3 HiSeq 2500 HiSeq single 100 1428.0 NaN NaN
4 HiSeq 4000 HiSeq paired 150 14494.0 HiSeq 3000 1746.41
5 HiSeq 4000 HiSeq paired 300 2562.0 HiSeq 3000 2431.25
6 MiSeq MiSeq single 150 1463.0 NaN NaN
7 MiSeq MiSeq single 300 1627.0 MiSeq 1202.19
8 MiSeq MiSeq single 500 1771.0 NaN NaN
9 MiSeq MiSeq single 600 2183.0 MiSeq 1782.99
10 NextSeq 500 NextSeq paired 150 3826.0 NextSeq 500 3085.83
11 NextSeq 500 NextSeq paired 300 5735.0 NextSeq 500 4904.79
12 NextSeq 500 NextSeq single 75 2302.0 NextSeq 500 1632.95
13 NaN HiSeq paired 200 NaN HiSeq 3000 2089.61
14 NaN MiSeq single 50 NaN MiSeq 948.99

Let's see if prices from both centers are correlated.

plt.rc('xtick', labelsize=15)
plt.rc('ytick', labelsize=15)
plt.rc('axes',labelsize=15)
p = sns.FacetGrid(data = merge_df,
             hue = 'machine',
             size = 5)
p.map(plt.scatter, 'md_price','gsaf_price')
p.add_legend(title = '')
p.set(xlabel = 'MD Anderson Science park\nsequencing cost (USD)',
     ylabel = 'UT-Austin GSAF\nsequencing cost (USD)')

# label outlier
for i, row in merge_df.iterrows():
    if row['gsaf_price'] > 10000:
        label = row['machine'] + ' ' + str(row['total_base']) + ' bp'
        p.fig.axes[0].text(row['md_price'] + 200,
                           row['gsaf_price'],
                           label)

p.fig.axes[0].plot(range(5000), color = 'black')
[<matplotlib.lines.Line2D at 0x11cd434a8>]

png

We can see that sequencing prices from both centers are proportion to each other, with NextSeq runs tend to be of higher cost per sequenced base.

I noticed there was a HiSeq run being an outlier in the plot (~14000 USD at UT-Austin GSAF vs ~2000 USD at MDA Smithville), it is possibly a mis-labeling of a full run (8 lanes for HiSeq) price instead of a per-lane-price. For the next analysis, I will assume that's the case.

I am interested at the head-to-head comparisons between the two sequencing centers for different sequencing run types,

merge_df = gsaf_price_df\
    .groupby(['Platform','machine','ends','total_base'], as_index=False)\
    .agg({'gsaf_price':np.min})\
    .merge(mda_price_df, how ='inner') \
    .filter(regex = 'price|machine|ends|base')\
    .pipe(pd.melt, id_vars = ['machine','ends','total_base'],
                 var_name = 'center',
                 value_name = 'price')\
    .assign(center = lambda d: np.where(d['center'].str.contains('gsaf'),
                                        'UT-Austin GSAF',
                                        'MD Anderson Science park')) \
    .assign(price = lambda d: np.where(d.price > 10000, d.price / 8, d.price))

p = sns.FacetGrid(data = merge_df,
             col = 'machine',
             sharex=False,
             size = 5)
p.map(sns.barplot, 'total_base',
                  'price',
                  'center',
                  palette = okabeito_palette(),
                  hue_order = ['MD Anderson Science park',
                              'UT-Austin GSAF'])
p.add_legend(bbox_to_anchor=(0.5,0.8),
            fontsize=12)
p.set(xlabel = '',
     ylabel = '')
p.set_titles('{col_name}')
p.fig.text(0.4, 0, 'Sequencing cycle (nt)', fontsize = 15)
p.fig.text(0, 0.8, 'Per-lane-price (USD)', fontsize = 15, rotation=90)

png

From the figure, it looks like UT Austin GSAF has a higher price for every sequencing type.

For the comparison in HiSeq runs, GSAF is running HiSeq 4000 while MD Anderson Science Park is running HiSeq 3000, so that maybe one of the reason. For the other ones, seems like the machines are the same.